If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-5=56
We move all terms to the left:
x^2-5-(56)=0
We add all the numbers together, and all the variables
x^2-61=0
a = 1; b = 0; c = -61;
Δ = b2-4ac
Δ = 02-4·1·(-61)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{61}}{2*1}=\frac{0-2\sqrt{61}}{2} =-\frac{2\sqrt{61}}{2} =-\sqrt{61} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{61}}{2*1}=\frac{0+2\sqrt{61}}{2} =\frac{2\sqrt{61}}{2} =\sqrt{61} $
| y/2+7.4=-9.6 | | 0.25x^2-3x+34=0 | | x3+1=9 | | x+8=-14*3 | | 5/9w=35 | | 2n-3n=-8 | | 2(6n-2=+13 | | 6x-(-4+5)=7(6x-3) | | (x+4)^5=1024 | | -2=k+-11 | | -3=r-19 | | 1/2t=1/4 | | -2x+10=-4(5x-3) | | 14(h-1)=70 | | 6y-14=37 | | 14(h-1)=84 | | -r-2r=-3 | | -3(2x+4)=3x-12 | | 3x-7x=70 | | z^2–8z+15=0 | | (14-5x)-(8-10x)=102 | | 0.45x+x=60 | | 5w-8=T | | (14x-22)+(3x+44)=90 | | 7.8p+9-0.8p=-20.13+3.2p | | 2x^2=3x-5=0 | | 100w-210=690 | | -4(1-4x)=44 | | 3(4n+1)=51 | | n+5=3n-11 | | a/2+4=13 | | (n-2)*180=3960 |